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Gravitational instability in suspension flow
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The gravity-driven flow of non-neutrally buoyant suspensions is shown to be unstable
to spanwise perturbations when the shearing motion generates a density profile that
increases with height. The instability is simply due to having heavier material over
light – a Rayleigh–Taylor-like instability. The wavelength of the fastest growing
disturbance is on the order of the thickness of the suspension layer. The parameters
important to the problem are the angle of inclination of the layer relative to gravity,
the relative density difference between the particles and the fluid, the ratio of the
particle size to the thickness of the layer and the bulk volume fraction of particles.
The instability is illustrated for a range of these parameters and shown to be most
pronounced at intermediate values thereof. This instability mechanism may play an
important role in pattern formation in multiphase flows.

1. Introduction
Particulates are an integral part of many industrial processes, and whether in the

form of suspensions or dry granular flows, they present an engineering challenge that
has so far been met empirically and with only partial success. Thus, there has been
interest in the last few decades in analysing the complex behaviours of granular and
granular-fluid flow, but the field remains rich with unexplained problems, with new
phenomena being continually discovered.

Granular media can exhibit complex behaviours, being solid, liquid, or gas-like
depending on the situation, and sometimes exhibiting multiple states (e.g. see the
reviews by Jaeger, Nagel & Behringer 1996a, b and Savage 1984). Among the in-
teresting facets of granular flow behaviour is a large set of instabilities, including
oscillons formed in vertically vibrated containers, e.g. see Umbanhowar, Melo &
Swinney (1996), segregation of granular media in mixers driven by such differences in
particle properties as size, density and shape (Hill & Kakalios 1995), fingering insta-
bilities in suspensions and dry granular flows (Lange et al. 1998; Pouliquen, Delour &
Savage 1997), segregation of neutrally buoyant particles in suspensions (Tirumkudulu,
Mileo & Acrivos 2000), wave patterns in sand (Fried, Shen & Thoroddsen 1998), and
longitudinal vortices in granular flows (Forterre & Pouliquen 2001). Analysing these
instabilities and patterns can lead to crucial insights into granular and granular-fluid
flow behaviour.

In many situations, the particles are heavier than the suspending fluid, whether
liquid or gas, and the resulting density variations can lead to flow, as in the experiments
of Forterre & Pouliquen (2001) for granular flow down an inclined plane, or the
fingering instability in a sedimenting suspension analysed by Völtz, Pesch & Rehberg
(2001). In flows with heavy particles, rapid shearing motion adjacent to a boundary
can create a region of low density that supports the weight of a denser, slower
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Figure 1. Gravity-driven flow of a suspension through an inclined channel of height H . The
inclination angle θ ranges between 0◦ and 90◦, from pure sedimentation to vertical flow. The
direction parallel to the channel walls (the flow direction) is taken to be x.

shearing layer (cf. figure 5). This adverse density stratification can then be unstable
to spanwise (or longitudinal) disturbances, similar to the classic Rayleigh–Taylor
instability: a local increase in density (or particle fraction) will fall due to gravity
and drag down material from above which is even denser, further enhancing the
perturbation. This instability mechanism appears to be new and generic, although the
precise growth rates and wavelengths will depend on the nature of the suspension or
granular flow. This instability may be operative in several granular and suspension
flows and may be responsible for a variety of patterns observed in these systems.

To illustrate this basic instability mechanism we consider the situation of a heavy-
particle viscous suspension flowing through an inclined channel and examine its
stability to perturbations spanwise to the flow. In the gravity-driven flow, the particle
volume fraction, and therefore the density, can increase with height in the velocity
gradient direction due to a balance between shear-induced particle migration and
buoyancy and thus be unstable. Section 2 defines the problem and introduces the
governing equations. The base state showing the adverse density stratification is
discussed in § 3, and its linear stability to spanwise perturbations is considered in § 4,
where the motion is seen to be unstable at all wavelengths, with a maximum growth
rate at a wavelength on the order of the suspension layer thickness. Concluding
remarks are given in § 5.

2. The governing equations
The problem considered is gravity-driven flow of a suspension down an inclined

channel as illustrated in figure 1. The system is modelled as a continuum viscous
suspension and we use the suspension-balance model of Nott & Brady (1994) as
modified by Morris & Brady (1998). In the following we ignore inertial effects, an
acceptable assumption for low particle and geometry Reynolds numbers, and the
suspension as a whole is incompressible. Thus, conservation of mass and momentum
for the suspension are

∇ · 〈u〉 = 0, (2.1a)

∇ · 〈σ〉+ ρg = 0, (2.1b)
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where ρ = ρf + ∆ρφ and ∆ρ = ρp − ρf . The subscripts p and f denote the particle
and fluid phases, respectively. We also have mass and momentum conservation for
the particle phase:

∂φ

∂t
+ ∇ · 〈u〉pφ = 0, (2.2a)

∇ · 〈σ〉p + ∆ρφg− 9

2

η

a2

φ

f(φ)
(〈u〉p − 〈u〉) = 0, (2.2b)

where f(φ) is the hindered settling function, and φ denotes the volume fraction of par-
ticles of size a. The stress 〈σ〉 and the velocity 〈u〉 are suspension-averaged quantities
(particle-phase averages if accompanied by the subscript p). In addition to the mass
and momentum conservation equations for the suspension and the particle phases, it
is necessary to include an energy balance, bringing in the suspension temperature. In
an inhomogeneous flow, the stress can be finite even in regions of vanishing shear rate
due to a possibly non-zero local fluctuational motion u′p = up − 〈u〉p. The suspension
temperature T = 〈u′p · u′p〉 introduces the necessary non-locality for the stress. For
these inertia-free flows the energy balance takes the form

〈σ〉p:〈e〉 − η α(φ)

a2
T + η∇ · κ(φ)∇T = 0, (2.3)

where 〈e〉 is the average rate-of-strain tensor, and the flux of fluctuational energy has
been modelled by a Fourier-type law. For convenience in notation, 〈·〉, denoting an
average, will be dropped from all further equations.

The constitutive relations for the particle and suspension stresses are taken to be
those appropriate for a viscous suspension (Morris & Brady 1998):

σp = −Π I + 2ηηp(φ)e, (2.4a)

σ = −pfI + 2ηe + σp = −(pf +Π)I + 2ηηs(φ)e, (2.4b)

where Π is the particle-phase pressure

Π = ηa−1p(φ)
√
T , (2.4c)

pf is the average pressure in the fluid, and ηp and ηs are the relative viscosities for
the particle phase and the suspension, respectively.

To close the equation set we also need to specify the volume fraction dependence of
the functions p, ηs, α, κ and f; as in Morris & Brady (1998), we take these functions
to be

p(φ) = ηp(φ),

ηs(φ) = 1 + ηp(φ) = (1− φ/φm)−2,

α(φ) = kαηp(φ)/φ,

κ(φ) = kκηp(φ),

f(φ) = (1− φ)−5,

with kα = 0.815 and kκ = 0.8. The maximum volume fraction is taken to be φm =
0.68. In a homogeneous shear flow with constant shear rate γ̇, 〈σ〉p = ηηpγ̇ and
equation (2.3) gives an uniform suspension temperature T = (γ̇a)2α(φ)/ηp(φ) as
expected.
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For a more complete description of the model chosen and the reasoning behind its
derivation, the reader is referred to Nott & Brady (1994), Morris & Brady (1998) and
references contained therein.

3. The base state
The parameters that govern the flow are: the angle of inclination with respect

to the horizontal, θ, the ratio of the particle size, a, to the channel width, H ,
with ε = a/H � 1, the bulk volume fraction of particles, φb, and the density ratio
B = ∆ρ/ρf . The gravitational acceleration g and the fluid viscosity η are important
in establishing the characteristic velocity, Uc = ρfgH

2/η, but do not appear in
the dimensionless groups characterizing the problem and therefore affect only the
quantitative behaviour of the system. Gravity affects the qualitative behaviour of the
system through the angle of inclination θ.

The base-state flow is unidirectional, parallel to the channel walls, and satisfies
the conservation equations (2.1)–(2.3). Using the constitutive relations defined above
and taking (u, v, w) as the (x, y, z) components of the suspension velocity, we obtain
the following system of dimensionless equations, where the variables are scaled with
y ∼ H , u ∼ Uc and T ∼ ε2U2

c :

d

dy
ηs(φ)

du

dy
= −(1 + Bφ) sin θ, (3.1a)

d

dy
(p(φ)

√
T ) = −Bφ cos θ, (3.1b)

ε2 d

dy
κ(φ)

dT

dy
− α(φ)T = −ηp(φ)

(
du

dy

)2

. (3.1c)

The velocity, temperature and volume fraction satisfy the boundary conditions

u = 0 at y = 0 and y = 1, (3.2a)

T =
ηp(φ)

α∗(φ)

(
du

dy

)2

at y = 0 and y = 1, (3.2b)

and the integral constraint on volume fraction is∫ 1

0

φ(y) dy = φb. (3.2c)

In (3.2b) α∗(φ) = 20 α(φ) (Morris & Brady 1998), stating that the fluctuational motion
is reduced near a boundary but scales in the same manner as in the bulk. In the base
state up − u ∼ O(ε2), i.e. there is no phase slip.

This system does not lend itself to an analytical solution and was solved numerically.
Typical results are shown in figure 2 for a range of channel inclinations and at a
density ratio B = 1, in figure 3 for a range of B at a specific channel inclination
and in figure 4 for a range of bulk volume fractions and a range of ε = a/H , the
ratio of particle size to channel height. In general, the suspension velocity profile
is blunted in comparison to the corresponding parabolic Newtonian velocity profile
– the variation in the particle volume fraction affects the suspension viscosity, very
strongly so in regions of high density such as near the centre of the channel (where
φ → φm), and since the shear stress varies almost linearly with position, the shear
rate is diminished in those regions. Note that the blunting of the velocity profile
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Figure 2. Base state particle volume fraction and velocity profiles for φb = 0.40, H/a = 30.54 and
B = 1: θ = {30◦ (· · · ·), 50◦ (− · − · −), 70◦ (- - - -), 90◦ (——)}. Increasing θ results in increasing
symmetry around the centre of the channel.
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Figure 3. Base state volume fraction and velocity profiles for φb = 0.27, θ = 45◦, H/a = 18.32 and
B = {0.01 (· · · ·), 0.1 (−·− ·−), 1 (- - - -), 1.4 (——)}. For small B the velocity grows with increasing
B. It achieves a maximum for B ≈ 1, and experiences a slight decrease upon further increase in B.
Increasing B always results in increasing asymmetry in the velocity and density profiles.

‘follows’ the maximum in the volume fraction (see figure 3). Decreasing inclination
angle, θ, and increasing density ratio, B, lead to increasing sedimentation, and in the
limits θ → 0 or B → ∞ the particles pack down on the bottom of the channel and
flow as a plug (if they flow at all – in the θ → 0 limit, the driving force for flow
in the x-direction is lost and the system becomes a sedimenting one). However, for
θ 6= 0 and more physically reasonable density ratios, B ∼ O(1), the particle volume
fraction varies in a more interesting manner across the channel, as seen in figure 2,
reminiscent of the results of Nott & Brady (1994) and Morris & Brady (1998) for
pressure-driven flow. Similar to the results of Morris & Brady (1998), we note that
having particles of a different density breaks the symmetry around the centre of the
channel, such that the maximum in the particle volume fraction and in the velocity
tends to occur above the centreline. Most importantly, the rapid shearing motion
close to the bottom wall generates a large pressure (via the suspension temperature
and (2.4c) for the particle-phase pressure) so that the region of low density near the
wall can support the weight of the heavier, slower shearing region in the middle, and
the system has an adverse density profile of heavier material over light, the driving
force for instability.
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Figure 4. Base-state volume fraction and velocity profiles for B = 1 and θ = 45◦. Top: H/a = 18.32,
with φb = {0.15 (——), 0.25 (· · · ·), 0.35 (− · − · −), 0.45 (- - - -), 0.55 (——)}. Bottom: φb = 0.27,
with H/a = {10 (· · · ·), 20 (− · − · −), 25 (- - - -), 50 (——)}. The velocity increases with decreasing
φb and increasing H/a. The density (volume fraction) profile decreases with decreasing φb and its
maximum in the centre of the channel becomes more pronounced with increasing H/a.
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Figure 5. Base-state particle volume fraction and velocity profiles for φb = 0.27, H/a = 18.32,
B = 0.8 and θ = 45◦. Comparison of model results (line) with Stokesian Dynamics simulations
(triangles).

The results of the model compare favourably to Stokesian Dynamics simulations,
as can be seen in figure 5. These base state profiles may depend slightly upon the
choice of model – for example, one could use the diffusive-flux model of Zhang &
Acrivos (1994). However, as shown in Fang et al. (2002), these differences are minor,
and the inverted concentration profile, the important result, is maintained regardless
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of the model chosen. The mechanism of instability and all of the conclusions drawn
here are therefore independent of the model.

4. Linear stability analysis
We perform a standard linear stability analysis of equations (2.1)–(2.3) to per-

turbations in the spanwise direction z of the form f′(y) = δf(y) eikz+st, with k the
wavenumber and s the growth rate. Here δ is the small amplitude of the perturbation.
(Note that f(y) denotes a general function, not to be confused with the hindered
settling function f(φ).) All variables are non-dimensionalized as before. In solving the
perturbed problem, all terms of O(ε2, δ2) or smaller are neglected, and the linearized
perturbation problem becomes

D(η◦sDu)− k̃2η◦s u = −Bψ sin θ −D(η′sψDu◦), (4.1a)

(D2 + k̃2)η◦s (D
2 + k̃2)v − 4k̃2D(η◦sDv) = −Bψk̃2 cos θ, (4.1b)

s̃ψ = −vDφ◦, (4.1c)

−α◦T = α′T ◦ψ − 2η◦pDu
◦Du− η′p(Du◦)ψ, (4.1d)

subject to the conditions

u = v = Dv = 0 at y = 0 and y = 1, (4.2a)

T =
η′p
α
ψ(Du◦)2 + 2

η◦p
α◦

Du◦Du at y = 0 and y = 1, (4.2b)∫ 1

0

∫ W/H

−W/H

ψ dy dz = 0, (4.2c)

where ψ is the perturbation in volume fraction, D = d/dy, ◦ denotes a base-state
quantity and the ′ denotes differentiation with respect to the volume fraction. The
dimensionless wavenumber and growth rate are k̃ = kH , s̃ = sH/Uc = s/(ρfgH/η),
respectively, and W is the period of the perturbation in the z-direction.

In order to determine the growth rate s̃(k̃), we need only solve the eigenvalue
problem obtained by combining (4.1b) and (4.1c):

(D2 + k̃2)η◦s (D
2 + k̃2)v − 4k̃2D(η◦sDv) = −Bk̃

2 cos θDφ◦

s̃
v, (4.3)

with the boundary conditions on v given by (4.2a). Equation (4.3) shows clearly that
the driving force for the instability is the base-state density gradient Dφ◦ = dφ◦/dy.
When dφ◦/dy > 0 the system has an adverse density stratification and is unstable.
Equation (4.3) is a fourth-order ordinary differential equation with variable coefficients
and was solved numerically. Matlab proved quite helpful in this regard and the results
corresponding to the base-state profiles given in the previous section are shown in
figures 6 and 7.

In the sedimenting limit, θ → 0 or B →∞, the density gradient Dφ◦ is negative
throughout the channel, and the system is stable – light material over heavy. However,
for intermediate values of θ (0◦ < θ < 90◦) and B there is always some heavier
material above light, a system which is inherently unstable. In these regimes, the
temporal growth rate of the instability is positive and any small perturbation would
grow. The system is unstable for all wavenumbers, with a maximum growth rate at
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Figure 6. (a) Dimensionless temporal growth rate of the instability, s/(ρfg sin θH/η),
as a function of dimensionless wavenumber kH for φb = 0.40, H/a = 30.54 and B = 1:
θ = {30◦ (· · · ·), 50◦ (− · − · −), 70◦ (- - - -)}. Because here s has been scaled with sin θ, the
growth rate increases with decreasing θ. If this scaling were removed, the growth rate would
achieve a maximum at an intermediate value of θ. (b) φb = 0.27, H/a = 18.32 and θ = 45◦:
B = {0.01 (· · · ·), 0.1 (− · − · −), 1 (- - - -), 1.4 (——)}.

0 5 10 15 20

(a) (b)

kH
0 5 10 15 20

kH

s/
(ρ

fg
si

nθ
 H

/η
)

2

4

6

8
(×10–4)

2

4

6

8
(×10–4)

φb=0.15

Figure 7. (a) Dimensionless temporal growth rate of the instability, s/(ρfg sin θH/η),
as a function of dimensionless wavenumber kH for B = 1, θ = 45◦, H/a = 18.32 and
φb = {0.15 (——), 0.25 (· · · ·), 0.35 (− · − · −), 0.45 (- - - -), 0.55 (——)}. (b) B = 1, θ = 45◦,
φb = 0.27 and H/a = {10 (· · · ·), 20 (− · − · −), 25 (- - - -), 50 (——)}.

a wavelength of O(H), the height of the layer. (From (4.3) one can see that in the
low-wavenumber limit (k̃ → 0) s̃ grows as k̃2, while in the high-wavenumber limit
(k̃ → ∞) s̃ decays as 1/k̃2 due to viscous damping.) Thus, one would expect patterns
of this wavelength to form initially, which might then lead to the kinds of patterns
seen in suspension and granular flows. (Note that, although the system is unstable as
k̃ → ∞, when the wavelength is of order the particle size, ka ∼ O(1), the continuum
model may no longer be appropriate and we could expect, therefore, a high-k̃ cutoff.)

The results shown in figure 6 illustrate the effect of varying B and θ upon the
growth rate of the instability. Increasing B – increasing the relative density difference
between the particles and fluid – causes the system to be more unstable, at least
in the intermediate B range. The instability of the system is also dependent upon
θ. Basically, the two extremes of inclination – horizontal and vertical – give two
stability limits. In the limit θ → 0◦, the system moves towards sedimentation. In the
limit θ → 90◦, there is no longer a component of gravity perpendicular to the walls,
and, even though the density varies in the ‘right’ way for instability, the system is
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stable due to the lack of a driving force. As a result, the system is most unstable for
angles that lie between these two extremes. Figure 7(a) illustrates the effect of varying
the bulk volume fraction φb. Increasing φb is similar to increasing B – the system
becomes slightly more stable for the higher bulk volume fractions. Figure 7(b) shows
the effect of varying H/a, and it is seen that provided H/a & 10 there is little effect
of the particle size on the instability. (Note that H/a must be large in order to treat
the suspension as a continuum.) Indeed, to a first approximation the growth rate and
most rapidly growing wavelength are roughly independent of particle size and the
slight decrease in the growth rate for large H/a is due to the high volume fraction
near the centreline (cf. figure 4) which increases the local viscosity. It is important to
note that the system is most unstable at intermediate values of the parameters – that
is, when the system is at its most physically reasonable – not θ → 0◦ nor θ → 90◦,
not B → 0 nor B → ∞, not H/a → 1 nor H/a → ∞ and not φb → 0 nor φb → φm,
but somewhere in-between.

5. Conclusions
For the problem of gravity-driven flow of non-neutrally buoyant suspensions, we

report the existence of a maximum growth rate for spanwise instabilities on the order
of the height of the channel, H . The instability is present whenever the flow-generated
density gradient is aligned antiparallel to gravity. Although this unstable density
gradient is generated only by flow, it shares some characteristics with the classical
Rayleigh–Taylor instability – basically, having heavier material over light. The system
is unstable to small perturbations over the range of the most physically reasonable
particle–fluid density ratios and channel inclination angles, with the growth rate of the
instability depending upon these parameters as well as on the bulk particle volume
fraction and to a much lesser extent on the ratio of particle size to channel height.
As seen in figures 6 and 7 the growth rate is small and therefore one would need a
long channel (L/H ∼ O(1/s̃)) in order to see the instability, suggesting that rotating
drum experiments might be more desirable in practice. Also note that although the
precise details of the growth rate, etc. depend on the constitutive relations used in the
suspension-balance model, the basic instability mechanism does not.

Although we are not aware of any heavy viscous suspension experiments with
which to compare, the experiments of Forterre & Pouliquen (2001) for the stability of
granular flow down an inclined plane are qualitatively similar to the system examined
in this work. Rapid granular flows display the same flow-induced adverse density
profile and therefore should be subject to the same instability. Indeed, the experiments
of Forterre & Pouliquen (2001) showed the formation of spanwise patterns whose
wavelength was on the order of 3h, where h was the height of their granular layer. It
is interesting to note that for the current work, the most unstable wavelength tends to
be approximately 1.2H for most parameter sets (corresponding to k̃ ∼ 5), and since
the channel height is approximately twice that of the suspension layer, H ≈ 2h, the
most unstable wavelength is approximately 2.4h, quite close to the observed granular
flow instability wavelength.

In addition to the extra inertial effects associated with granular flows (note, however,
that in the steady unidirectional base state, inertia is not important), the stability of
suspensions and granular flows may also be affected by the presence of normal stress
differences (Brady & Carpen 2002), which were not included in the present analysis.
Normal stresses can be expected to enhance the intriguing behaviour of these systems
and might prove interesting to investigate.
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Finally, the gravity-driven flow investigated here may also be unstable to longitudi-
nal perturbations – in the flow direction, for example as seen in the case of stratified
flow with a free surface (Plaschko & Schaflinger 1998) – perturbations whose form
will now be complex: a travelling wave in addition to an exponentially growing part.

The authors would like to thank Dr Z. Fang for his help with the numerical
solution of the base-state problem as well as for providing the Stokesian Dynamics
simulation results.
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